L-Glutamate production by lysozyme-sensitive Corynebacterium glutamicum ltsA mutant strains
نویسندگان
چکیده
BACKGROUND A non-pathogenic species of coryneform bacteria, Corynebacterium glutamicum, was originally isolated as an L-glutamate producing bacterium and is now used for fermentative production of various amino acids. A mutation in the C. glutamicum ltsA gene caused susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. RESULTS The characteristics of eight lysozyme-sensitive mutants which had been isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis were examined. Complementation analysis with the cloned wild-type ltsA gene and DNA sequencing of the ItsA region revealed that four mutants had a mutation in the ltsA gene. Among them, two mutants showed temperature-sensitive growth and overproduced L-glutamate at higher temperatures, as well as the previously reported ltsA mutant. Other two showed temperature-resistant growth: one missense mutant produced L-glutamate to some extent but the other nonsense mutant did not. These two mutants remained temperature-resistant in spite of introduction of ltsA::kan mutation that causes temperature-sensitive growth in the wild-type background. CONCLUSIONS These results indicate that a defect caused by the ltsA mutations is responsible for temperature-sensitive growth and L-glutamate overproduction by C. glutamicum. The two temperature-resistant mutants seem to carry suppressor mutations that rendered cells temperature-resistance and abolished L-glutamate overproduction.
منابع مشابه
A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production.
The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to ...
متن کاملCharacterization of LtsA from Rhodococcus erythropolis, an enzyme with glutamine amidotransferase activity.
The nocardioform actinomycete Rhodococcus erythropolis has a characteristic cell wall structure. The cell wall is composed of arabinogalactan and mycolic acid and is highly resistant to the cell wall-lytic activity of lysozyme (muramidase). In order to improve the isolation of recombinant proteins from R. erythropolis host cells (N. Nakashima and T. Tamura, Biotechnol. Bioeng. 86:136-148, 2004)...
متن کاملEnhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range
BACKGROUND Gamma-aminobutylate (GABA) is an important chemical in pharmacetucal field and chemical industry. GABA has mostly been produced in lactic acid bacteria by adding L-glutamate to the culture medium since L-glutamate can be converted into GABA by inherent L-glutamate decarboxylase. Recently, GABA has gained much attention for the application as a major building block for the synthesis o...
متن کاملA Corynebacterium glutamicum rnhA recG double mutant showing lysozyme-sensitivity, temperature-sensitive growth, and UV-sensitivity.
Corynebacterium glutamicum mutant KY9707 was originally isolated for lysozyme-sensitivity, and showed temperature-sensitive growth. Two DNA fragments from a wild-type C. glutamicum chromosomal library suppressed the temperature-sensitivity of KY9707. These clones also rescued the lysozyme-sensitivity of KY9707, although partially. One of them encodes a protein of 382 amino acid residues, the N-...
متن کاملGlutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status.
The Corynebacterium glutamicum gltB and gltD genes, encoding the large (alpha) and small (beta) subunit of glutamate synthase (GOGAT), were investigated in this study. Using RT-PCR, a common transcript of gltB and gltD was shown. Reporter gene assays and Northern hybridization experiments revealed that transcription of this operon depends on nitrogen starvation. The expression of gltBD is under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Biotechnology
دوره 1 شماره
صفحات -
تاریخ انتشار 2001